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Abstract-A finite element formulation of the minimum potential energy theorem is used to establish the basis
for an experimental test program in composite and non-composite materials. The flexibility of the variational
technique permits the experimental program to incorporate specimens of arbitrary geometry with a wide variety
of stress and kinematic boundary conditions.

The resulting experimental program utilizes comparisons between mathematical results and experimental
measurements to evaluate the analytical accuracy of resulting approximate mechanical descriptions.

INTRODUCflON
SUBSEQUENT to its introduction in 1956 [1], the finite element technique has developed
into one of the most versatile methods for the analysis of stress and deformation in solid
continua. Extensions of the basic variational principle have found application in the areas
ofplane stress, plate bending and shell analysis, including such behavioral effects as buckling
and finite deformations, linear, nonlinear, inelastic and time-dependent materials. All such
analyses implicitly assume that the material properties are known a priori, and that the
corresponding mechanical descriptions are sufficiently accurate to justify refined mathe
matical solutions.

It is significant that the aerospace industry, a traditional outlet for such sophisticated
analyses, is currently committed to the investigation of non-conventional materials for
application in efficient, light-weight designs. These materials, notably epoxies, fiberglasses,
elastomers and filamentary and particulate composites, are frequently utilized in working
components after only rudimentary investigations of material behavior. Rapidly increasing
use and development of such materials underscores the pressing need for material charac
terization techniques which are compatible in accuracy with the currently employed
analytical methods.

The present paper examines an application ofthe finite element method in the mechanical
characterization of elastic solids. The numerical technique is generally applicable to the
experimental investigation of macroscopically homogeneous, time-independent materials
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utilizing: (1) specimen configurations with kinematic boundary restraints (as opposed to
stress boundary conditions), (2) arbitrary specimen geometries and deformation modes,
and (3) the inclusion of general anisotropic linear, piecewise linear and nonlinear material
properties. The emphasis in the method is directed towards: (1) a consistent degree of
accuracy between the analysis and the experiment, and (2) the incorporation of internal
checks for the accuracy of the resultant material constants.

BACKGROUND

An examination of contemporary experimental techniques indicates that a majority
of experiments are designed to approximate a specimen configuration in which the stress
state is statically determinate. The slender tension specimen and the thin-walled tube have
been extensively employed, since an application of 81. Venants principle is sufficient to
eliminate boundary effects from the stress analysis. Tubes and slender rods, however, are
not applicable to all materials, and for composites in particular, flat sheet specimens have
been adopted [2, 3].

Reference [2] provides an insight into errors that arise from introducing approximations
in the stress analysis of two-dimensional experimental specimens. The specimen (Fig. 1)
was analyzed in Ref. [2] as a stress boundary-value problem, in which the loads were
approximated by a uniform stress distribution at infinity. The resultant airy stressfunction
solution predicted a uniform state of stress at a radius (R) about the center of the specimen
which will exist independent of the material properties. A finite element solution of the
same problem (Fig. 2) reveals that the Airy stress function can be in error by as much as

9·12 typical (Hariz. and Vert.)

1·50 red. (Typ.)

JJ
FIG. I. Biaxial-loading specimens designs. All dimensions are in inches. (Reproduced from Ref. [2].)
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FIG. 2. Finite element analysis.

20 per cent, and that the state of stress is not independent of the material properties as
assumed by the author.

The approach to be employed in this investigation emphasizes that the experiment
and the analysis be carried out simultaneously. From the diagram below, it may be seen
that both the experiment and the analysis form an integral part of the material character
ization.

Calculated Measured
deformation r-- ? -- deformation

state state

Analytical
Calculated

material
model constants



14 KENNETH T. KAVANAGH and RAY W. CLOUGH

The experimental measurements are used to evaluate material constants, which are, in
turn, the basis for an equivalent mathematical model. The mathematical model serves
primarily as a check on the derivation of the material constants-by predicting the experi
mentally measured deformation state. Whenever the mathematical results coincide with
the experiment, the analysis of material constants may be assumed to be correct and the
characterization is complete. t A similar comparison of experiment and analysis was
recently employed by Karnes [4] to illustrate errors in the analysis and assumed stress
states of bar impact experiments.

For the consideration oflinear materials, or for piecewise-linear increments, the experi
mental program can be based upon a systematic recycling of the process given above. An
initial set of material properties is assumed, which can be used to predict certain charac
teristics of the mathematical solution. The prediction is then combined with experimental
measurements to produce a "corrected" set of material constants, which becomes the basis
for a new cycle. The cycle below:

~<-o.K.
Comparison
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improvement

Revised
material

calculation

N.G.-
Estimated
material

t
property

Approximate
solution

1
Measured

experimental
deformations

(1)

terminates whenever the predicted and corrected material constants coincide--or when
successive cycles fail to produce further improvement. The failure of any cyclic improve
ment after (N) cycles is indicative of the error that will be incorporated in any mathematical
model-and can be considered the limit of accuracy in any subsequent analysis.

ANALYTICAL PROCEDURE

The finite element background is given for a quadrilateral plane stress element, although
the general procedure is applicable to plate bending, shell and three-dimensional analyses.
Simple bi-linear displacement functions are assumed, and the element is developed accord
ing to a procedure by Irons [6].

Displacement functions are selected such that:
4

U = L qJi(a, b). Ui
t

4

V = L qJi(a, b). Vi
1

t When comparisons are limited to a small number of data points, the question of uniqueness arises. It has
been found, however, that multiple solutions will rarely occur within the limitations of positive-definite material
descriptions (stable materials), and that extraneous solutions can be eliminated from physical intuition.
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Ui = displacement at node (i) in direction (X)

Vi = displacement at node (i) in direction (Y)

15

The functions, CPi, are the Lagrange interpolation functions for the non-dimensional
coordinates (a, b). Coordinates (a, b) are related to the global (X, Y) system through the
transformation:

4

X = L cpj(a,b). Xi

4

Y = L cpj(a, b)Y;.

Element strains are defined in terms of Ui, Vi' cpj by:

and subsequently converted to matrix form:

(2)

(3)

(4)

(5)

where: <CPx> = <CP1,x'" CP4,x >etc.

= [B]{u} (6)
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The element stiffness derives from the expression minimizing the potential energy of
the system:

where:

i5 (potential energy) = 0

NEL f
i~l i5({P}T{u} -t Vi {eV[C] {e} dv) = 0

{P}j = t [BY[C] [B]{u} dv

= [K]i{U}

[K]j = t [BY[C][B] dv

(7)

(8)

(9)

(10)

{P}j = generalized nodal forces (element [i])

[C] = matrix of elastic constants

[K]j = element stiffness (element [i])

NEL = number of elements.

The stiffness matrix, [K], in equation (10) can be seen to be a linear function of the
material constants, Cij. It is possible, therefore, to express equation (9) in an alternative
form by reordering the variables:

where:

and:

{P} = [K(u)]{C}

[K] = refomlUlated element stiffness

(11 )

The "direct stiffness" assembly of element equations leads to two equivalent stiffness
expressions for the solid configuration.

{R} = [K] {r} (a)

NxN

{R}, {r} = global load and displacement

{R} = [K(r)]{C} (b).

Nx6

(12)

The first equation, equation (12a), expresses the nodal equilibrium in terms ofdisplacement
unknowns, while the second, equation (12b), expresses the equilibrium in terms of material
unknowns.
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Equation (12b) is non-square, and must be solved in terms of least-squares:

{C} = [[Ky[K]]-l[K]{R}.

17

(13)

The matrix, {C}, therefore, represents a form of mathematical "best fit" approximation
to the material constants which is based upon a measured (or approximate) set of nodal
displacements, {ra} ~ {r}.

An alternative approach to equation (12b) is obtained by splitting the matrix [Cij] into
six positive-definite component matrices:

giving the equivalent-least squares solution:

{R} = [IX 1[K](l)+1X2[K](2)+ ... +1X6[K](6)]{r}

{R} = [lXt{R}(1)+ ... +1X6{R}(6)] = [R]{IX}

{IX} = [[RY[R]]-l[Ry{R}.

(14)

(15)

(16)

(17)

Experimentally, the determination of Cij is obtained from equation (13) or equations
(14), (17) by measuring deflections at each node point and computing either [K] or [R]. Any
solution, however, must be coupled with the least-squares fit of the experimental data,
which can be numerically sensitive.

In terms of computational ill-conditioning, the freedom of choice in equation (15) of
the component matrices [CiJ(i) permits the matrix [R] to be better conditioned than [K].
A choice of [Cij](i) such that {R}(i)T. {R}W = 0 and {R}(i)T . {R}(i) =I 0 provides an ideally
conditioned system of equations.

A computational problem also arises when few non-zero components enter the matrix
{R}, i.e. whenever a small number of node forces are present. Then, small displacement
errors in {ra} can cause the sum of the squares of the residuals,

{E} = {R}-[K]{C} (18)

to be ofthe same order as the sum ofthe squares ofthe node forces, i.e. {EV {E} ~ {RV{R}.
In such a case, the solution, equations (13), (17), produces a degenerate solution:

{C} or {IX} ~ {O}. (19)

Figure 3 illustrates the sensitivity of the solution as the norm of {E}, designated by IIEII,
approaches the norm of {R}, designated by II R II.

The two basic equations, equations (13), (17), are directly applicable to experimental
programs in which point displacements are recorded as data. Both equations, however,
require data to be recorded at each node point, and are subject to both an excessively large
number of measurements and to the accompanying sensitivity ofthe least-squares solution
[see equations (18), (19)]. More importantly, the computation of IKI and IRI will become
increasingly sensitive to measurement errors as the mesh size is refined. The increased
sensitivity reflects the necessity of computing differences between nearly equal displace
ments.
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FIG. 3. Least-squares sensitivity.

To eliminate the above sensitivity, an iterative scheme can be employed. Undesirable
nodal pointst are "condensed" from the solution using a combination of equation (12a)
and equation (12b). The matrix condensation:

(20)

{R -K I2KilQ} = [K tl -K I2KilK 21 ]{r}

(MxM)

(21)

proceeds directly from equation (12a). (M) defines the number of data points remaining
after (N - M) points have been condensed.:/:

Condensation implies a partial solution for {q} in terms of {r}, and therefore, requires
some knowledge of the material properties. Such a solution must be approached iteratively,
in which [K I2J and [K22Jare expressed in terms of an estimated material law, [Cij]. [KtlJ
and [K2IJare then reformulated as in equation (12b) to give:

(22)
{R-K I2 KilQ} = [K tl -K 12KilK21]{C}'

Mx6

The recursive use of equation (22) leads to a cyclic re-estimation of CI1 and recalculation
of Cl~+ I) at each step. When Cl~) and ClV I) coincide, the iteration is complete.

The question of convergence of equation (22) as an iterative solution is problematic,
since the convergence is a function of several parameters: (1) the type of boundary-value
problem, (2) the number of points retained, (3) the choice of points retained, (4) the relative
number of points condensed to points retained, and (5) the number of different stress states
in the specimen.

A computer investigation of convergence was conducted to estimate convergence
properties on the following bases: (1) random errors in {raJ were limited to IIEII S; !IIRII,

t Points for which no measurements are recorded.
t For plane stress M ~ 6.
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(2) all boundary-value problems yielded more than one distinct strain state, and (3) com
parisons were restricted to the relative number of points retained in the solution. As a
results of the investigation, automatic convergence appeared assured whenever:

IC~-C~'I100 x IJ IJ < 10 per cent (a)t
ICi}\ - .

IIKlllI ~ IIK 12KilK21 II (b) (23)

{R} fully populated (c)

irrespective of the choice of remaining data points.t
Equation (23a) is a prohibitive requirement, since it demands that the initial guess be

within 10 per cent of the true solution (for each of the components in [Cij]). It is possible,
'however, to carefully select the measured data points such that equation (23a) is extended to :

IC~-C~·I
100 x IJ IJ < 50 per cent. (24)

ICijI -

The selection process requires prior analysis of the boundary-value problem to determine
points which are sensitive to changes in the material constants. It is distinctlY' advantageous
to select data points such that an equal number of points are sensitive to changes in each
of the material constants.

The convergence can be aided by an initial set ofiterations using a coarse mesh-defined
as one in which the stress state will be approximately 10 per cent in error. Since iteration
time increases as the square ofthe mesh refinement (square of the band width), many more
iterations can be carried out in comparable time on a given coarse mesh. A reasonable
coarse mesh was found to be one-half as refined as the mesh required to give the desired
"final" material constants. Figure 4 shows the rate of convergence of the iteration when
different coarse mesh schemes are applied.
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t C'ij = nth iterative refinement of the initial material estimate C3.
t So long as the remaining data points did not yield a singular set ofequations.
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(25)

NONLINEAR ELASTIC MATERIALS [5, 7]

Equations (14), (18) are applicable to the characterization of nonlinear elastic materials,
provided the nonlinearity can be expressed as a linear combination of nonlinear functions.
A hyperelastic formulation can be used to represent the strain energy in polynomial form:

NEL

L b[P;U-ljJi(I IJ2J3)] = 0
i~l

where ljJ is an isotropic strain energy function:

ljJ = CIJr+C2J2+C3II+C4JIJ2+CSJ3+C6I1+···

Ci = material constants.

Equations (25), (26) are functions of the invariants of the strain tensor,

(26)

= (iJljJ iJJ I + iJljJ iJJ2 + iJljJ iJJ 3 ) [}e ..
iJJ I iJf-ij iJJ 2 iJf-ij iJI3 iJf-ij I)

= (<I> I bij+ <l>2 f-ij + <l>3f- ikf- jk)[}eij

in which the strains are written using indiciaI notation:

f-ij = 1(Ui,j+Uj,i+tUk,iUk,)

f-ij = Lagrange strain tensor

Ui = deflection in direction Xi

Ui,j = iJu;/iJXj'

(27)

(28)

(29)

Strains, and the corresponding finite element equations are developed in indicial form
through equations (28), (3) and (5):

[
UI,1 UI,2] [<qJ,x)][~1 V.I]= .. = [u.-]
U2,l U2,2 <qJ,y)" .,).

U4 V4

The finite element analytical solution is obtained as the solution to a nonlinear set of
equations, equations (25H29). Equation (25), however, is specialized to be nonlinear in the
displacement gradients only. In a similar fashion to equation (12b), equation (25) can be
reformulated in terms of the material constants:

{R} = [K] {~l}
NxS Cs

S = number of material constants

N = number of nodal points.

(30)
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The nonlinear nature of equation (25) will prevent any reformulation in terms of
equations (14H17), and more importantly, will prevent an iterative solution of the type
shown in equations (20H22). The solution, equation (30), is rarely a one-step process,
however, since it is necessary to determine whether or not the material expansion,
t/J = L~ Cd,{/ 1/ 2 / 3 ), is sufficiently general to characterize the material over the experi
mental range of strain, (/ 1 ,/2 ,/3 ), When the expansion, t/J, is not sufficiently general, it is
necessary to fit the polynomial over a subset ofthe equations in [.K] representing a localized
region of the space (/ 1 , 12 , 13),

The experimental procedure has been investigated [5] for a polyurethane foam speci
men. The specimen, shown in Fig. 5, was loaded with six point-loads, using three variations
of the load configuration. A total of six experiments was performed, resulting in a combined
strain range of approximately:

-0·10 < 11 < 0·31

0·0 < 12 < 0·04

-0·001 < 13 < 0·01.

(31)

It was determined in that investigation that no polynomial incorporating less than fourth
order terms in the strain, &ij, could represent the foam behavior over the total range of
(/ 1 ,12 ,/3 ), The procedure failed whenever the polynomial expansion was fit over an
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FIG, 5. Polyurethane specimen (tension test). (Reproduced from Ref. [5].)
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apparent discontinuity in the stress-strain behaviort and whenever the material exhibited
significantly inelastic behavior.t

A stable least-squares fit was achieved by subdividing the strain range into four sub
regIons:

-0·1 < 11 < 0

0< 12 < 0·009

0<13 <0.001

0<1 1 <0.04

0< 12 < 0·005

0< 13 < 0·0009

0·04 < 11 < 0·09

0·005 < 12 < 0·012

0·001 < 13 < 0·004

0·09 < 11 < 0·31

0·01 < 12 < 0·04 (32)

0·004 < 13 < 0·01.

The piecewise fit for the fourth order expansion (in Gi) predicted analytically the observed
experimental strains to within 20 per cent-in all regions of the specimen. The error was
less than t the error introduced by a linear least-squares law (quadratic in Gi). The 20 per
cent error reflected measurement errors in the experiment as well as computational errors
arising from the discontinuities in the piecewise defined strain energy function.

CONCLUDING REMARKS

A series of computational schemes have been presented for the characterization of
elastic solids from statically indeterminate test specimens. The computational schemes
require a least-squares "fit" of the experimental data, which in turn, assumes that at least
(N) independent equations exist for the determination of (N) material constants. The
existence of independent equations becomes fundamental to the choice of experimental
specimens, since any homogeneous stress or strain state will yield a singular matrix solution.

An iterative procedure is based on the requirement for a limited number ofexperimental
measurements. The procedure is generally well-suited to experimental investigations, since
those data points with high relative measurement error can be eliminated from the analysis.
The iterative procedure, however, is not assured of convergence. Additional studies will
be required to determine which parameters control the convergence, and which measure
ment points create the least experimental sensitivity.

The procedure has been applied to the characterization of nonlinear elastic materials,
assuming a special power series representation of the strain energy function. In this case,
laboratory experiments were performed to demonstrate the method. Approximate material
constants were derived, and subsequently used to predict the experimental deformations.
Such a comparison limited the test of material constants to those states of strain explicitly
contained in the characterization. It is emphasized that any comparison with different
ranges of strain constitutes an extrapolation of the results which may not be valid.
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A6cTpaKT-C l\enbJO yCTaHOBJIeHHlI OCHOBbl nporpaMMbl 3KcnepHMeHTanbHoro Hccnet\OBaHHlI KOMn03Hl\
HOHHblX H HeKOMn03Hl\HOHHbIX MaTepHlInOB, Hcnonb3yeTcll H3nOllCeHHe KOHe'lHOrO :meMeHTa, KacaJOll\eecli
TeopeMbl MHHHMyMa nOTeHl\HanbHoit 3HeprHH. YHHBepcallbHOCTb BapHal\HOHHOro cnoco6a n03BanlieT
BKJlJO'IHTb B 3KcnepHMeHTallbHylO nporpaMMy 06pa3l\bl, o6nat\alOmHe npOH3BOnbHoit reoMeTpHeit, npH
IIlHpOKOM pa3HOo6paJHH rpaHH'IHhlX HanpllllCeHHblX H KHHeMaTH'IecKHX ycnoBHit.

nonY'!eHHali 3KcnepHMeHTallbHall nporpaMMa Hcnonb3yeT cpaBHeHHlI MellCt\y MeTeMaTH'IecKHMH
pe3YnbTaTaMH H 3KcnepHMeHTanbHhlMH H3MepeHHlIMH, c l\eJlbJO Ol\eHKH aHanHTH'IecKoit TO'lHOCTH
cyMMapHblx npH6JIHlICeHHhlX MeXaHH'IecKHX onHcaHHlt.


